Physiological Approaches to Improve Water Use Efficiency: Vegetable Crops

John L. Jifon
Texas AgriLife Research, Weslaco
FOCUS: Improve the productivity of applied irrigation

• Plant processes that regulate crop water use

• Manipulating these processes to conserve water at the farm and higher levels

• “doing more with less”
Approaches

- Drip Irrigation and Plasticulture
Approaches

- Plasticulture & drip irrigation
 - Deficit irrigation
 - Partial root zone drying
 - Drip tape placement
 - (depth and emitter spacing)
 - Grafting
 - Anti-transpirants
 - Population density
 - Scheduling
Deficit Irrigation: Melons

- Strategy to control vegetative growth thus increasing water savings.
- Average water savings of ~20 mm by reducing irrigation amounts by 25% (or irrigating at 75%ET).
- No significant effect on yield or quality.
- Leaf physiology: Transpiration reduced but water use efficiency increased.
Drip tape placement: Onions

- Root distribution in soil profile as a function of emitter spacing & drip tape depth
Grafting: Watermelons

- Improving drought tolerance by grafting on drought tolerant rootstocks.
- Grafting resulted in 1 - 2 additional harvests without additional water inputs.
- Grafted plants maintained a more favorable water status than non-grafted plants.
Others: Planting density

- Making the most out of applied water
- Finding optimum planting density to maximize water productivity: Yield/in
Disrupt vector reproductive cycle and disease spread by controlling moisture availability and flushing patterns.
Others:
Water Management for Energy crop production

- Sustainability
Thank you

jljifer@ag.tamu.edu