Research and Education Project Reports

Ambika Chandra (Hard copy handout passed around on linear gradient for turfgrass)

(For) Guy Fipps
- Different turfgrass varieties with different irrigation amounts, looking at response from various irrigation levels
- Determine minimum crop water requirements for city ordinances restricting water use

Nolan Clark, USDA Agricultural Research Service, Bushland
- Hired to see if sprinkler irrigation works on the high plains – proven it does
- Research leader for manure management and renewable energy group
- Co-leader of Ogallala project:
 - 12 of 16 scientists at Bushland are engaged in water research
 - Handout: 2007 Ogallala research accomplishments passed out
 - At $3.6 million funding right now. If Congress passes appropriation bill, go over $4 million.
 - Mission – ensure sustainability of agricultural water supplies
 - Participants: ARS Bushland, ARS Lubbock, Kansas State University, Texas A&M University, Texas Tech University, West Texas A&M University

Annual solicitation for programs
- Program divided by 7 research priority areas
- Funding special projects: looking at interaction between policy changes on water issues and water level in the aquifer (economists and hydrologists), $1 million for four years

Automation of pivot systems using plant temperature
- System next year will be integrated in with Valley-integrated system using wireless system

Remote sensing of ET
- Doing over-flights; predict ET rates for 20 counties at one time

Serve on DOE committee – looking at water-energy nexus prediction that by 2030 going to double electric generator capacity in the United States
- Need some new power source besides steam else it will double water use
- Currently 38% of water is used for energy nationwide
- Water quality is important, not cost because consumers pay the cost
- Costs more to treat brackish water as opposed to buy good quality water (such as irrigation)

Another crop scenario (what if) model:
- Crop-Water Allocator (can be found at http://www.oznet.ksu.edu/mil/cwa/)

Don Ethridge & Jeff Johnson, Texas Tech University
- Involvement in Ogallala
 - Texas Reliance for Water Conservation – Floyd and Hale counties
 - Demonstration project cooperating with 26 producers in the counties
 - Multi-institution (Texas Tech, Extension Service, High Plains Underground Water District, Natural Resources Conservation Service)
 - Objective: Come up with environmentally and economically sustainable systems – continuous cotton, forage, livestock, integrated cotton and livestock system looking at production and water use and net farm income
- Long-term project; started 2 years ago; total 10-year project
- Massive amount of real-time data being collected
- Main focus is water conservation; looking at saving water by adjusting production systems from crops to livestock
- State objective is water conservation with minimum economic impact.
- Vivian Allen, Calvin Trostle, Phil Johnson work on the project; funded through TWDB

Three other smaller projects/areas of work:
- Craig Bednarz – looking at irrigation of cotton and grain sorghum and their responses under drip irrigation. Water use efficiency focus
- Gerald Henry, plant and soil sciences – looking at drip irrigation in turf systems, including turf varieties under drip
- Steve Moss (joint with ARS lab) – looking at different irrigation systems primarily in cotton production; doing a lot of geographical mapping of systems both under irrigation and not under irrigation
- Micah Farmer, hydrologist in Junction – working on water planning for Upper Guadalupe River, proposal right now; watershed planning project, irrigation is only a piece of it. Focusing more on regional planning and municipal planning issues
- Jeff, Jim and Dana – drip irrigation investment analysis on uniformity issues on water distribution within the system; interaction between water use and new cotton varieties – optimal input use

Thomas Marek, Texas Agricultural Experiment Station, Amarillo, Bushland & Etter

- True variable radial irrigation system funded through Ogallala
- Limited irrigation functions with corn breeder out of Lubbock
- Cotton modeling trying to develop for High Plains
- Work with Giovanni on developing crop coefficients using lysimeters for TXHPET and PET models with the Precision Irrigators Network
- Development of irrigation interface tools and cooperation between North Plains, South Plains and TXHPET models (grower profiles, set-up on field basis), funded through technology transfer division of Ogallala initiative – what more progressive growers want and need
- Irrigation demand estimation models.
- Request by TWDB to continue doing irrigation estimates because of its performance-based results, involved for Region A planning and larger hydrology projects where providing estimates and evaluating socioeconomic impacts on policy
- Doing probability analysis not just average values but real-time values on effect on aquifers
- New lysimeter design and operation parameters
- Sprinkler design work for reference lysimeter fetch values (work done with Terry Howell)

Remote Sensing of ET
- Trying to validate field-by-field situation, then integrating for spatial aspect; look at temporal aspects
- How many snapshots do you need per area to validate
- Crop color and temperature
- New instrumentation working with UT
- Controlling dust with irrigation
- Feed yards spend a lot trying to control dust using a lot of water; shallow lysimeters monitoring dust control
- Adding associated tools on ET network – weather, velocity for wind, proactive type recommendation

Steve Amosson, Texas Cooperative Extension, Amarillo

- Involved with Thomas, Terry, Utah, TCU – developing irrigation demand methodology for the state
- Economics of irrigation systems: Cost of transporting water, part of Region A plan
- Economic evaluation of alternative management strategies identified by and includes water demands and implications from an economic standpoint to save water
- Value of water for various agricultural uses.
- Agricultural water demand modeling (with Thomas)
- Working on baselining some activities to measure impacts of Ogallala aquifer; of these policies we’ll be looking at, part is socioeconomic
- Economic Evaluation of AgriPartners project
- Wind-power irrigation and feasibility
- Economic aspects of water use associated with ethanol, including plant and breaking up by different crop phases (under Ogallala)
- Irrigating for dust control in cattle feed lots

Karl Steddom, Texas Cooperative Extension, Overton
- East Texas Irrigation Association put research plots in for us (just getting started)
- Plant pathologist, water drives most diseases. Water conservation strategies should reduce disease.
- Plots set up with six different plot irrigation controls. Looking at water savings, reduction of disease, fertilizer, leaching and soil moisture fluctuation – East Texas has high rainfall, sandy soils

Vincent Haby, Texas Agricultural Experiment Station, Overton
- East Texas has two major aquifers: Carrizo – shallow 250-270 feet – and Wilcox aquifers
- Water quality in aquifers is different
- Wilcox water – high bi-carbonate, high sodium = iron deficiency in blueberries
 - Establish historic use of water
 - Just getting into use for forage irrigation
- Carrizo better for irrigation; some iron and sulfur, but not as salty as Wilcox
 - Going to start using for supplemental irrigation of forage crops
 - Have a lot to learn about irrigation implementation, design, etc.
- No one providing irrigation support at this point

Xavier Peries for Juan Enciso, TAES/TCE, Weslaco
RGBI Task 4 On-Farm Irrigation Management – Research
- Develop crop coefficients on soybean and corn
- Try to analyze impact on melon and onion yields and quality if apply irrigation at different levels; irrigation probes
- Main idea: yield and quality response to deficit irrigation (based on different percentage of ET field capacity levels)
RGBI – Extension
- 12 different cooperators
- Give guidelines and soil moisture measuring, uniform measurements
Cotton Incorporated in St. Lawrence area in West Texas
- Installed drip systems on cotton, try to evaluate how they stand up after 20 years of use
- See uniformity of drip over time.
Evaluate best management practices (BMPs) for non-point source pollution in the Arroyo Colorado watershed (with Texas State Soil and Water Conservation Board)
- Six BMPs have been chosen, still in process of being approved
- What is the impact of leaches and runoff in the watershed
- Three samplings per site, also have lysimeters installed to get sampling from groundwater (analyze water quality parameters, pH, phosphorus, oxygen, etc). Two-year study with sampling
- Main idea: create simulation model
New direction Center in Weslaco is taking – going towards bioenergy production (ethanol, biodiesel)
- Not much into it right now, but it all needs water. Currently need to find funding
For Shad Nelson, Texas A&M University Kingsville
Agricultural Demonstration Initiative through TWDB in Harlingen Irrigation District, Cameron County
- Evaluating pivot systems on different crops and turf; find how uniform they are
- Economics involving that project and how much it’s going to cost
- Compare irrigation technologies – drip, pivot, flood, etc.
- Main focus: Maximize irrigation use efficiency at the farm level
- Provide efficient irrigation scheduling
- Companion project to one on High Plains looking at water conservation through more precision irrigation methods

Danny Fromme, Texas Cooperative Extension, Uvalde
- Began in Uvalde May 1, 2007
- Looking at getting precise management on irrigation termination on the last irrigation of cotton
- Using heat unit concept and when cutout occurs know it is before flower
- Very little yield comes from 5 nodes above white flower
- Looking at concept of getting irrigation done from heat unit to cutout
- Precisely measure what’s been applied and how much is in the soil when last irrigation is made
- Precisely putting last irrigation on has value
- Cotton Incorporated is also interested in it

Lloyd Nelson, Texas Agricultural Experiment Station, Overton
- Plant breeder, ryegrass breeder
- Selected dwarf short ryegrass for turf used for over-seeding sports fields and home lawns, but requires a lot of water for establishment (8 days in a row); interested in selecting for drought tolerance
- Selection for high salinity, doing some research in greenhouse – grow plants in sand and grow in salt tanks, increasing salt up to 18-20,000 ppm (50% of seawater)
- Have some tolerance, making progress in making high salt tolerance
- Take out to Pecos and put under select irrigated systems at the Pecos Center. Hoping to get selection there for high salt tolerance
- Getting funding from USGA – study next 3 years
- Need high salt-tolerant ryegrass

Giovanni Piccinni, Texas Agricultural Experiment Station, Uvalde
1) Determination of crop water use and crop coefficients for agronomic crops in collaboration with Leskovar on vegetable crops
- Collaborate with ARS group at Bushland, Thomas Marek and Arland Schneider to engineer, modify and make lysimeters better; originally started with three, now have seven in-ground laying lysimeters
- Built similar to small lysimeter at ARS Bushland
- One on tall fescue grass to look at ETo evaluation and do comparison of actual ETo versus calculated ETo looking at micromromatic changes
- Last two built have two different types of soil and were funded by Wintergarden Water Conservation District to look at crop water use with soils from their district
- Work with Daniel on corn, cotton, sorghum, onion and spinach
- At this point, keeping facility for determining crop water use and development of crop coefficients to put in formula
2) Use crop coefficient for actual irrigation management
- Given water restrictions in Uvalde region (limited to pump no more than 2 acre-feet per year from aquifer) = limited deficit irrigation
- Not enough water for two crops or given the economics of area; strong interest from SAWS to purchase water rights from growers to use for San Antonio region that is expanding rapidly
- Growers leasing or selling water rights; less risky to lease or sell water than farm with, but can only sell 1 acre-foot
- Predominant to work on limited irrigation
- Develop crop coefficient under limited irrigation –pivot and drip
- Looking at classical approach of 75% ETc
- Time of year where we can go 50%, then replenish full need
- Working with Danny Fromme on when to cut irrigation

3) Trying to develop decision support system (DSS) for irrigation management
- Teamed up with Temple group working with CroPMa for long-term decision making
- Will be true interest to growers – what if scenarios to reduce water use yet maintain yields – start looking at going down to 100 bushels corn to save more water to sell and make supplementary budget

4) Developing in-season group, built identically to TXHPET on smaller scale
- Give in-season advice to growers on how much to apply or has been applied naturally
- Ideally, like to continue working on that to develop crop coefficient
- Compare to see variability of CWU and crop coefficient; move away from on-station besides lysimeter work; move more to on-farm working with growers
- Look at different irrigation practices, methods and water conservation, tie in to soil moisture modeling, CroPMa and other modeling at Temple
- Have overcome some of the growing pains; it’s getting better every year
* Consortium could serve tremendous opportunities for those that have not been within the system for too long and may not have those ties

Jin Ye, Biological and Agricultural Engineering, College Station (with Guy Fipps)
- Demonstration project using different drip lines from different manufacturers
- Purpose: See what are the endurances of these products
- Subsurface drip irrigation

Daniel Leskovar, Texas Agricultural Experiment Station, Uvalde
- Vegetable crops, drip irrigation, subsurface drip, LPS
 Precision Irrigators Network
- Monitor vegetable crops; stand establishment; transplants – try to reduce their stress
- Artichokes, melons, tomatoes, peppers
- Deficit irrigation practices studying nitrogen and impact on crop quality
- Alternate crop strategies for irrigation for potential crops that may have a niche in Texas
- Working on stand establishment and irrigation on onions with John Jifon in Weslaco

Dana Porter, TAES/TCE, Lubbock
- Look at improving management and drip irrigation
- Paul Colaizzi has subsurface drip irrigation work – high-tech
- Trying to compliment both of their research programs
- Compliment Craig Bednarz work – looking at improving models and cotton growing
- Explosion of new, stripper varieties
- A lot of collaboration and support for agronomy, plant pathology, entomology, etc.
Extension – Irrigation Training Program (ITP)
- Developing curriculum
- Have a lot: Extension and research from A&M and other universities, trying to package it into a curriculum that makes sense for higher-level growers and make trainings for county Extension agents
- Working on manual and conduct six workshops around the state
Charge as Extension Specialist to train county Extension agents
- Strategic planning and evaluation – developed specific questions to ask, specific topic areas to address, break-out at agent request, subcategories, etc.
- Hopefully will help in accountability reporting and help county Extension agents to feed into that. Report on district, region and statewide levels
TXHPET Network
- Expanded number of stations, expanded tools; came about b/c just wanted to work together
USDA-ARS Ogallala Aquifer Network
- Technology transfer project (collaboration) – has been an useful, effective way to get collaborations organized and are developing materials together

Jim Bordovsky, Texas Agricultural Experiment Station, Lubbock

Transition from fully-irrigated to dryland production because we’re running out of water; a lot of interest for that water for other uses
- Maintain economy of area while transition occurs
- Field-laboratory-based concepts – what can we do with a little bit of water
- Get most of rainfall during growing season, so want to take advantage of rainfall
- Look at extremes – what can you do by adding a little supplemental irrigation with natural water resources? Or take water from whole area and concentrate on smaller areas and fully manage top-of-the-line outdoor greenhouse
- Started looking at cotton/sorghum rotation irrigating with LEPA system; put out 5 inches per season; double for next at 10 inches
- Producers base on price of commodity
- Over last two years, changed protocol on how we irrigated that rotation
- 20-acre area under pivot where rotation is established
- Limited to how much water can be applied; sales of water, water marketing is a compliment
- Treatments with cotton/sorghum rotation – apply pre-plant only irrigation, don’t put in crop if we don’t have soil-water content higher than certain level or use 4 or 5 inches of water
- Superimposed across different crop rotations – on all of these, one dataset is already completed (worked with Evelyn Steglich and Wyatte Harman at Temple on modeling) and will see where we can expand dataset
- Want to be able to make decisions in growing season of limiting the amount of water and direct it to something else
Working with Steve Moss on Crop2K program
- Economic part: getting datasets ready for graduate student to work on
- Inverse is fully irrigating crop
- Work in that area has to do with drip irrigation, the most efficient way to deliver water to a crop
- A lot of work overcoming some of the problems with subsurface irrigation – germination during dry period, soil amendments; addressing depth and location of drip laterals in field
- Installed 16 acres of drip in shallow area to address germination; will likely have various shallow drip installations
Row Creep – another situation with drip
- Trying to maintain crop rows...one row will be closer than adjacent rows, over years it can move
- Set up small plot area (4-5 acres), have offsets of drip tape relative to crop rows
- Looking at putting drip laterals perpendicular to crop rows to look at effect of drip on production (increase or decrease, long-term soil properties)
- Looking at different row spacing (30-inch, 40-inch row crop spacing)
Collaboration on various spacing where we’re using water at different levels and measuring crop response
GPS guidance system for installation (used by less than 50%)
Evelyn Steglich, Texas Agricultural Experiment Station, Temple

- Three main projects
 1) Through use of crop production functions, develop IrrigAID worksheet (Wyatte, TWDB)
 - Excel worksheet put in crop system, irrigation cost (calculator) – how much water you have available
 – set up for cotton, corn and sorghum
 - Allows you to play “what if” games on do either allocating all water to one crop or divvying it up
 between all two or three
 - Breaks up into three stages
 - Economic threshold – how much do you gain by putting on an extra irrigation?
 - Lower Rio Grande Valley and Uvalde are using it; getting it ready for the High Plains
 2) Rio Grande Basin Initiative
 - Worked one-on-one with growers in past to help manage their irrigation – time consuming because it
 was on a weekly basis
 - Developed a soil-water management tool (CroPMan, WinEPIC) to input cropping system,
 fertilization, irrigation, cropping practices, soil information, water table and anything else that would
 help supply irrigation schedule
 - Input all information and get 14-day available soil water by layer
 - Have this tool for the Rio Grande Valley; plans for Wintergarden, Coastal Bend and eventually High
 Plains (slow process because the Web programmer quit)
 - Working with Tom McLemore (Harlingen irrigation district manager)
 - Different opinions on salinity issue in the Rio Grande Valley
 - Took soil samples and salinity analysis before and after crops; will compare the numbers
 - Use those numbers to help validate EPIC
 3) Precision Irrigators Network project working with Giovanni Piccinni
 - What-if scenarios on what the producers have been doing; have last year’s irrigation rates
 - Used several different levels above and below what they applied – determined economic analysis and
 yields; doing again this year