Welcoming remarks made by Bill Holloway, resident director of research and professor, Texas AgriLife Research & Extension Center at Uvalde

- Giovanni Piccinni is leaving the Center to work for Monsanto in St. Louis, MO
- Still focusing on water
- Keith Owens left last year; hired Jason West from Utah – strong background in water and utilization of water by extensive ecosystem situations
- Water is and will continue to be an important issue to the center

Bill Harris, associate director, Texas A&M AgriLife Texas Water Resources Institute

- Irrigation is a key subject in offices, meetings and discussions because of our water situation
- We have a drought in Texas every day, just a matter of where it is
- Establish intellectual property rights for irrigation methods – Jim Faijt
 o Developing new technologies, enhancing or revising intellectual property rights – practices, processes, etc.
- Last year was inaugural meeting in College Station
- Will rotate committee; secretary (Danielle) has agreed to remain to handle the Web site updates, listserv, communications, etc.
- Opportunity for researchers, educators to come together to talk about what we’re doing, talk with one another and facilitate collaboration across the state. Develop projects and programs to enhance efforts and bring in additional funds we wouldn’t normally have the opportunity to bring in. Bring special expertise together.
- TWRI very interested in pushing for program expansion in the area of irrigation water. Must do better job of irrigating and wasting less water for continued economic viability.
- Put teams together to go for funding we wouldn’t have been able to go to before
- TWRI has expert grant writers and project managers. We want to work with you, scientists, Extension personnel to put together grants, help with budget, reporting, etc
- Introductions
- Jim Faijt – Office of Technology Commercialization – work with profs and researchers in the University system that invent things that might have new technologies; water chemistry and water treatment; next area of focus for Texas A&M; if you think you have technology that has commercial value or should be protected for intellectual property – talk to Jim on how to work with him and the university to do so

Danielle Supercinski, communications coordinator and project manager, Texas A&M AgriLife Texas Water Resources Institute

- Worked with webmaster, Jaclyn Tech, to develop CIRE Web site and provided update of its tool
- Newest development – Progress and Outcomes section
 o This is a key format for each CIRE member to know what is currently going on throughout the state at the click of a mouse.
Created a login portal (simply create a new account if first time user or use previously created account if repeat user)
Once signed in – you may enter a new project or manage a current project
Categories provided to report under, but not all are required. The more information you enter, the more will be available to CIRE group.
Once projects are submitted, you can simply just add new information/updates as needed and you do not have to re-enter all of the information

- Grant Opportunities link is another new link that lists funding opportunities. Please email Danielle if you know of any new RFPs/RFAs that can be posted
- If at any time you are working with the website system and have a suggestion or improvement, please let Danielle know.
- Shad Nelson suggesting creating a similar portal for the RGBI program.
- Giovanni Piccinni asked if there was a way to search the ‘Progress and Outcomes’ reports
 - Yes – click on the progress and outcomes tab and enter in topic or key word you want to search. You can also modify your search by project title, status and/or PI.
- CIRE Materials link will include notes from the CIRE meetings for those who were not able to attend.
- An email will be sent out by Danielle regarding registering on the site and entering your information. Please send any suggestions then as well.

Giovanni Piccinni, associate professor, Texas AgriLife Research & Extension Center at Uvalde
- Collaboration, bring all irrigators together like we do in the RGBI Task 4 group
- Precision Irrigators Network collaboration with High Plains; very beneficial
- More competitive; multi-regional approach beneficial
- Work at the Uvalde Center – Overview of Task 4 RGBI, PIN, etc.
- Project started 8 years ago – Irrigation Management Under Limited Water Availability: Maximization of Profit
- Usually 18-19 inches of rain (within two days) then go into extreme drought; only three inches since the beginning of this year
- Develop project to work on water conservation; to do so, work on how much water a plant can use
- Pivot irrigation, subsurface drip irrigation
- Through support of local funding agencies (EAA, SAWS, RGBI) have a “state of the art” lysimeter facility; work with Tom Marek
- Edwards Aquifer Issues – can’t pump more than 2 acre-feet of water per year
- Strong competition for water; can sell water for $5,000 an acre-foot
- Maximization of agricultural production efficiency has become high priority
- Irrigation techniques – little furrow; majority LEPA or center pivot, subsurface drip
- PET Networks – weather stations throughout Texas; delivery system in place to deliver information on crop water use, but no localized information based on crop coefficients or some of the models for irrigation management – developed lysimeter facility
- Goal – develop crop coefficients for the region
- Seven in-ground lysimeters, six on crops
- As we get efficient irrigation system, can’t go with FAO because they’re not efficient. Use the regional information to create additional efficiency in crop irrigation.
• PIN I and II – research on these issues; PIN III – educational portion to deliver to the producers
• Growers more open to precision irrigation due to the 2 acre-feet maximum
• All water comes from aquifer, diesel costs high, cutting water use also cuts expenses
• Use CroPMan to simulate and calibrate the information. Compare information to growers in the area.
• Reported versus simulated yields; CroPMan model working fairly well
• Can look at projected yield versus precipitation for 20 years
• Opportunity and technology is there; if we take data from grower field and take data from his farm, he’s more willing to accept the data from his field as opposed to data collected at the Center.
• Tremendous possibility of water savings

Daniel Leskovar, professor, Texas AgriLife Research & Extension Center at Uvalde
• Support from RGBI, TWRI, Giovanni
• Large group of collaborators
• Precision irrigation for vegetable crops – deficit irrigation, culture, genetics, water savings, yield, flavor and phytochemicals
• Economic impact (average) b/t 2004-2007 $430 million
• Determine quality of crops – genetics, agronomic practices (irrigation and nitrogen)
• Case Studies: Subsurface drip irrigation in Poblano pepper – compare SDI and furrow in San Antonio
• Yield and leaf quality with deficit irrigation in spinach – center pivot irrigation; started in 2003 prior to crop coefficients; now have crop coefficients for spinach
• Soil moisture – test 50% ETc versus 100% ETc
• Increase deficit levels, increase vitamin C and caratenoid
• Low pressure system (LPS) for onions; yield and water use efficiency of LPS versus center pivot; LPS done very well; under SDI, marketable yield is low
• Doing some work on transplants – stress tolerance, inputs, land use; looking at ways to reduce transplant shock (when transpiration exceeds water uptake)

Juan Enciso, associate professor and Extension specialist-irrigation & water management, Texas AgriLife Research & Extension Center at Weslaco
• Water is relatively inexpensive ($7 - $26.5 per acre-foot)
• 600,000 irrigated acres; 87% ag water use
• Main crops – onions and melons; sugarcane, citrus
• Irrigation Systems in the LRGV:
 o 10% gated pipe
 o 33% earth ditch
 o 3% drip
 o 2% sprinkler
 o 52% poly pipe
 o 67% of the land in laser-leveled
• Irrigation scheduling in onions and melons (RGBI) using irrigation sensors; apply crop coefficients; helps with management
• Compare 50%, 75% and 100% ET and yield and quality of the crop at the Center
• If we stress a crop – see their response; conserve water; increase yields
• West Texas project to evaluate SDI for Cotton Incorporated
• Demonstrations in water management
 o Water savings of 5% to 40%
• Projects also done in Mexico
• Comparison of Drip vs. furrow irrigation on onions
 o Can improve yields and conserve irrigation on onions
 o Not as much difference or effect seen on corn
• Also evaluating microirrigation on citrus
 o Systems in valley deliver high amounts of water in a short time period
 o The microirrigation systems need more of a continuous supply of water
• Comparing irrigation scheduling sensors
 o Tensiometer
 o Granular matrix watermark
 o Echoprobe
• Drip tape experiments – transfer technology to farmers
 o Drip depth (6 in)
 o Emitter spacing
 o Emitter flow rate
• Irrigation Training
 o Good cooperation with irrigation district
 o Two workshops on irrigation
 o Trainings in the U.S. and some from Mexico come to these trainings
 o 700,000 irrigated acres of crops in Mexico
 o Producing fact sheets
 ▪ Irrigation monitoring with soil water sensor
 ▪ Using flexible pile (poly pipe) with surface irrigation
• Extension publications/fact sheets on “Irrigation monitoring with soil water sensors” and “Using Flexible Pipe (poly-pipe) with Surface Irrigation”
• Welcome collaboration on any of these projects: j-enciso@tamu.edu

Terry Howell, agricultural engineer, **USDA-Agricultural Research Service at Bushland**
• Irrigation Research (for the unit)
• Projects:
 o CRIS #1 Improving soil and water management practices in cropping and integrated crop-livestock systems ($500 K)
 o CRIS #2 Irrigation management and automation for increased water use efficiency ($1.1 Mill)
- CRIS #3 Irrigation management and automation for increase water used efficiency ($3.6 Mill) – AgriLife Research & Extension, Kansas State University, Texas Tech University, West Texas A&M University
- Main difference between CRIS #2 and CRIS #3 is that #2 was the in-house project and #3 was the multi-agency project

Personnel involved:
- Terry Howell (Research leader – Ag Engr)
- Jose Chavez (Ag Engr) - will be leaving in Jan for position at OSU
- Paul Colaizzi (Ag Engr)
- R. Louis Baumhardt (soil scientist)
- Steve Evett (soil scientist)
- Prasanna Gowda (Ag Engr)
- Jairo Hernandez (post doc)
- Susan O’Shaughnessy (Ag Engr)
- Robert Schwarts (Soil Scientist)
- Judy Tolk (Plant Physiologist)
- Karen Copeland (Soil Scientist)
- Vacancy (Ag Engr, Soil Scientist, Res. Hydraulic Engr) – currently open
- Collaborators (retired)
 - Paul Unger (Soil Scientist)
 - Don Dusek (Agronomist)

Center Pivot Automation and Control Project
- Obj – automatically schedule irrigation based on crop water stress feedback
- Sensors on pivot and in field (includes adjustable mast, sensor module and power supply - all wireless) that communicate with the laboratory
- Article published in journal

Comparison of MESA, LESA, LEPA and SDI in field - gross return $/ha vs irrigation at various irrigation deficiencies (25, 50, 75 and 100%)
- Net return improved at each irrigation deficiency in the order listed above with SDI being the highest (statistical data provided on graph not recorded here)

Learned over all that: As irrigation water resources decline, crop yields and WUE can be maintained or increased by converting uniform deficiency irrigation (watering at lower ETs)

Other projects under Bushland ARS
- Suitability of cotton as an alternative crop in the high plains
 - Article in Agronomy Journal
- BEAREX07 (Bushland Evapotranspiration and Agricultural Remote Sensing Experiment 2007)
- Aerodynamic Temperature Modeling

Bushland ARS has an electronic newsletter (monthly)

Wireless network systems: communication, data acquisition and management, RF modems, Pivot IRTs, CAMS Panel, Stationary IRTs

Wireless Infrared Thermometer Sensor Network System

In-field sensors – wireless (use IRTs)

Irrigation automation

Canopy temperature
• Simulations – growth and yield of grain sorghum and cotton; input weather data from long-term records at Bushland; crop culturing practices
• Conclusion – as irrigation water resources decline, crop yields and water use efficiency can be maintained or increased by converting uniform deficit irrigation
• Research projects – Landsat TM-based tillage, groundwater modeling project
• Sustainability of cotton in the High Plains
• Data – lysimeters, crop data, soil water, weather station data
• Terry.howell@ars.usda.gov or http://www.cprl.ars.usda.gov
• Newsletter e-mail available; can sign-up on the Web site

Thomas Marek, sr. research engineer, Texas AgriLife Research & Extension Center at Amarillo
• Texas High Plains ET Network – using newly standardized ET equations and can be used across the country
• Benefits of the network – good data
• TXHPET associated events/values for crops – field-based checks through PIN I and II
• Where there isn’t data from lysimeters, use FAO-56 staging concept
• Mutual corresponding working relationship
• Comparison how relatively good agreement yet differential information with reference soybeans between FAO and calculated data off the lysimeters
• About 680,000 pages of data processed
• Lysimeters are state-of-the-art designs in several sizes and classes. There are newer designs but they’re not built yet. Huge administrative commitment to lysimeters. $40,000 instrumentation on one unit easily.
• Crop coefficients – large weighing lysimeters
• Water planning – assessment, data analysis, methodology development, model verification, solutions based strategies and water savings
• Talking about putting in 65 wells at $2.2 million per well
• City of Amarillo agreed to not turn on a well until 2025; part of T. Boone Pickens deal to ship water to DFW or wherever he can find. T Boone wants his money out of it before it’s pumped down.
• Cotton tests – 91,000 bales two years ago; 93,000 bales last year; 53,000 bales this year after the bioenergy up-rise
• Four gins that are the latest and greatest in the state of Texas
• Futuristic evaluations; if we take half the corn production and change it to cotton, what happens? 10.5 million acre-feet reduction with no major effect on economics. Big picture: 10% reduction in profit. 1.5 million irrigated acres. There isn’t just one solution.

Tom McLemore, ADI project manager, Harlingen Irrigation District
• Lower Rio Grande Valley Agricultural Water Conservation Demonstration Initiative
• Bring research being done to the grower level
• Sponsored directly by Texas Water Development Board; additional funds from Rio Grande Basin Initiative, Texas AgriLife Extension Service, other irrigation districts, Texas A&M University-Kingsville, Axiom-Blair Engineering
• Advisory committee of cooperators, growers, specialists and those in the Rio Grande Valley
• 10 year project (they are in year 3) with 9 major tasks
• No site less than 20 acres so know how it works on large-scale
• One of the biggest problems they have is the growers’ confidence in the meter’s accuracy. The growers do not trust the numbers or readings that the meter is providing. So they developed the Harlingen Irrigation District meter calibration facility, which has a metering manifold and metering flume.
• Harlingen Irrigation District – meter calibration facility so growers can come and see how it works
• Required to meter water as it comes out of the Rio Grande; put metering devices on their facility to see that they really do and read correctly as they are advertised to do
• They have real time flow stations for the canals that helps the canal managers better manage their water resource
 - They have found that if they give a good head of water (3,000 gpm to a 40 ac field), he will manage his water better rather than if he is given a small trickle.
• Internet-based information is available – real-time flow information, weather information and water user accounting system
• Trying to replace as many open canals to pipelines
• www.hidcc1.org – weather station data on right column
 - Has current rain information and weather data for growers
• $2,500 per acre foot for water rights
• District is 20 miles from river north, 15 miles wide
• Surge and automated surface irrigation – three sites
 - Ability to deliver 3,000 to 4,000 gallons of water to a field a minute through surge valve
• Economic evaluation of demonstrated technologies – money gets attention of grower
 - Can save water through technology, but can we pay for the technology?
 - Each demonstration has an economic evaluation based on the FARM Assistance Program (Steven L. Klose)
 - Water in the Rio Grande Valley is too cheap
 - Flood irrigation; transferring to subsurface drip is too expensive; need to find a way to show them how they will save/make money by doing so

Shad Nelson, assistant professor, Texas A&M University-Kingsville
• Agricultural Demonstration Initiative
• Started from involvement in Rio Grande Basin Initiative
• Establish on-farm demonstration sites with growers to evaluate irrigation use efficiency in South Texas citrus, vegetable and field crop production
• Evaluate effectiveness of irrigation methodologies
• On-farm demonstration sites – soil moisture monitoring equipment
• Evaluate total precipitation and water use, compared to yields at the end of the season
• Evaluating narrow border flood
• Estimated 27,000 acres of citrus in the Lower Rio Grande Valley
• Can save between 40,000-75,000 acre feet annually if all citrus in Valley were converted to drip or microjet spray irrigation
• Taking research into growers fields so they can see that it works on their farms
• Compared to flood irrigation, microjet spray and drip are more conservative
• On-farm assessments scheduled to go through 2014 as long as funding holds out
• Growers are beginning to alter irrigation management
• Grower involvement is the key for future change – one grower telling another grower
• This year – water quality issues associated to what happens to the chemicals we apply to the citrus groves in the citrus industry
 o Funding from Bayer Chemical and additional from RGBI
 o Manage irrigation strategy
 o Are chemicals being taken up through the plant
 o Where are they going through soil system?
 o Are they going too deep?
• Impacts of compost on citrus – application right under canopy

Xavier Peries, Extension associate, Texas AgriLife Research & Extension Center at Weslaco
• Irrigation management, work with Juan Enciso and ADI project
• Arroyo Colorado project – assess agricultural nonpoint source pollution
• Water quality – high levels of nitrogen and phosphorous, which affects aquatic life
• See how we can improve water quality as fast as possible
• Runoff, infiltration
• Grain sorghum, corn, sugarcane crops – see what base management practices farmers can put in place to reduce the runoff in the Arroyo Colorado
• Water meters in association with probes; maximize yields at the highest level
• Strategies limit runoff to furrows, BMPs in place – field layout, apply water faster to the field; sometimes this is an impossible practice; laser level fields
• Use of polypipe versus earth ditches – don’t have infiltration loss with use of polypipe – saves 10-20% of water versus use of earth ditches
• Six sites for water use input, output – looking at water quality
• Each of six sites need to be monitored twice a year – two irrigations per season
• Measure flow leaving the field
• Water quality of irrigation water
• Surface runoff: surface sampling – 1) peak flow and 2) initial flow
• Field parameters:
 o Temp
 o pH
 o conductivity
 o DO
• Laboratory Parameters:
 o Total phosphorus
 o Dissolved orthophosphate phosphorus
 o Total Kjeldahl nitrogen
 o Dissolved ammonia
 o Dissolved nitrite plus nitrate
o BOD5, and
o Total suspended sediments

Zhuping Sheng, associate professor, Texas AgriLife Research & Extension Center at El Paso

• Projects:
 o Irrigation Efficiency/Rio Grande Basin Initiative project (CSREES),
 o Numerical model for flood control planning and water operations (USACE);
 o Irrigation conservation strategies for Far West Texas (TWDB);
 o Graywater and brackish groundwater for vegetable production (USBR);
 o Graywater and brackish groundwater for cotton production (Cotton Inc);
 o Return flow – alternative sources for urban water supplies

• Irrigation efficiency:
 o Assess water savings potential for lining canals and gain a better understanding of surface water and groundwater interaction
 o Permeability tests of soils from the canal beds
 o Monitoring network established on 5R Enterprises inc. pecan farm to monitoring efficiency of on-farm irrigation and impacts on groundwater

• Numerical models for flood control planning and water operations
• El Paso is in a drought; when it rains, it floods and water system not set-up to handle it
• Irrigation conservation strategies for Far West Texas: part of regional water planning project (TWDB) – analyze water conservation measures in regional water plan to determine applicability, actual efficiency (water supply) gains and feasibility of implementation
• Reuse of Graywater and Brackish Groundwater for Vegetable Production: evaluate impacts of graywater and brackish water irrigation on vegetable production and soil salinity
 o Three demonstration field experiments: chili, bell pepper and tomatoes
 o Better production by laundry water than brackish groundwater
 o No E. coli detected
• Reuse of graywater and brackish groundwater for cotton production: evaluate impacts of graywater and brackish water irrigation on cotton production and soil salinity; evaluate effectiveness of co-utilization of an organic mulch with marginal water in conditioning soils to maintain soil tilth and prevent aggregate instability
• Reuse of return flow: identify technique to produce potable water economically from winter irrigation return flows

Evelyn Steglich, senior research associate, Texas AgriLife Research & Extension Center at Temple

• IRRIG-AID – Irrigation Strategy Worksheet for the Wintergarden region irrigators (and may have it for High Plains now) – preseason irrigation strategy tool based on EPIC model (Wyatte Harman)
 o Grain sorghum, cotton, corn
 o Can allocate different amounts of water during the season, breaks down economically to see how much an inch of water would profit/lose
 o Helps irrigators use their water most efficiently
• Salinity accumulation in soils in the Lower Rio Grande Valley – Preliminary results
Sampled five fields in Cameron County with varying soils and varying crop irrigation levels
- Beginning of growing season (mid-April) and end (mid-August)
- Collected soil samples to a depth of 48” (front and back of field)
- Divided soil samples into one foot segments and analyzed electrical conductivity to measure salts
- As salt accumulation increased, sand content decreased and clay content increased
- More salt accumulation near surface at end of field due to way furrow irrigation works
- Salt accumulation increased toward end of season

- First soil samples taken prior to planting; not much pre-irrigation
- Salinity range: 300 ppm (beginning) to 3,000 ppm (end)
- Growers care about the bottom line – dollars per acre – collaboration between Uvalde and Temple help us put an amount to it

Norman Meki, post-doctoral research associate, Texas AgriLife Research & Extension Center at Temple
- Will Climate Change Require Changes in Crop Water Requirements and Management in the Lower Rio Grande Valley – proposal idea (Armen Kemanian)
- Model projection: 1.6-6.3 degree Fahrenheit increase in global surface temperatures by 2100 – increased evapotranspiration and increased global precipitation
- Local level scenarios – increased frequency of intense rainfall and floods; severe droughts and low soil moisture levels; heat stress and in some areas frosts; reduced streamflows and groundwater recharge
- Impacts on agriculture: production patterns could shift northwards; increased demand for irrigation water; reduced crop yields and production
- Project justification: increase in temperature and reduced precipitation will negatively impact irrigated agriculture and the economy of the Lower Rio Grande Valley; hence, predicting water needs and designing alternative agricultural management practices could mitigate harmful climate change effects to crop production and the economy of the LRGV

Dana Porter, assistant professor and Extension agricultural engineer specialist, Texas AgriLife Research & Extension Center at Lubbock
- Irrigation Training Program – to equip irrigation managers and technical support personnel with information and resources to supported improved irrigation management and water conservation
- Target audience – agricultural producers, especially progressive producers; certified crop advisers and technical service providers; Extension educators (county faculty)
- Irrigation scheduling, economics, irrigation technologies and BMPs, conservation BMPs, water quality issues in irrigation, crop-specific irrigation management, irrigation information resources and tools, and updates
- Irrigation training curriculum and resource manual (modular design)
- Training Events:
 - August 19 – Chillicothe
 - Winter 2008 – Wharton
Chenggang Wang, Texas Tech University, Assistant Professor of Agricultural & Resource Economics

- New to Texas Tech system
- Economics of Agricultural Production
 - Behavioral aspects: understanding producer input use behavior as it relates to agricultural and resource policy
 - Technical aspects: modeling agricultural systems to develop better management strategies
- Irrigation improvement and water conservation/savings
- Observed dryland farming to irrigated farming after farmers started adopting more efficient technologies
- How to differentiate the effects of different water use practices
- Consequence of farmers changing their water use behavior/decisions
- Current projects:
 - Identification of factors that limit crop yields
 - Efficiency analysis of cotton production
 - Measurement of the benefits of integrated crop and pest management
- Use data as example to develop algorithm so farmers can use algorithm to determine management decisions

Bob Wiedenfeld, soil scientist, Texas AgriLife Research & Extension Center at Weslaco

- Crop water use & management, Lower Rio Grande Valley
- Projects:
 - Sugarcane crop water use & irrigation scheduling
 - Sugarcane green versus burned harvested
 - Sugarcane irrigation method
 - Tillage system crop water use
 - Bioenergy crop production
- Use evapotranspiration based on weather data; try to adjust crop coefficient curve in area
- 20-25% of sugarcane crop harvested green in LRGV; burning is becoming environmentally unacceptable
- 8-10 tons/acre of dry matter on the soil surface after harvesting sugarcane – what effect does this have on crop water use? Soil moisture?
- Harvest from early October until April (6 month harvest season); 40,000-41,000 acres of sugarcane in the LRGV – have to figure out how to manage it and deal with it
- Irrigation study: furrow, drip and sprinkler side-by-side in a replicated study
- Conservation tillage (double cropping and cool-season cover crops) versus conventional tillage: warmer the climate, less benefits of conservation tillage, difficult to implement
- Bioenergy – cropping systems: sustainability (residue return, fertilization, crop rotation)
- Bioenergy oil seed crops – adaptability throughout the state of Texas, water requirements
Discussion on potential collaborative work, CIRE future and election of officers

- Chair, Vice-Chair, Secretary
- Secretary will remain the same each year – Danielle Supercinski
- Will rotate positions – vice-chair will move to chair, and a new vice-chair will be elected
- This year, we need two new positions due to Giovanni leaving
- Continue with same format – rotate areas each year (different part of the state), include a field tour
- Next year – High Plains or North Plains
- Chair: Thomas Marek
- Vice-Chair: Shad Nelson
- New point of interest brought up – Climate Change: IPCC report, TWDB reports, other studies
- TWDB Climate Change Conference to be held in El Paso on June 17
- Collectively collect proposal following up what Armen, Norman and Evelyn at the Temple Center have proposed on modeling and collecting information up and down the river on economics, production practices, etc.
 - Get together before June 17 meeting so it can be given to TWDB as an unsolicited proposal
- Are there private industry sources looking into this?
- Keep looking at TWDB for possible funding for projects
- PIN III proposal submitted to TWDB to implement educational component
- Next time hope to hear from folks that didn’t talk today to hear what they’re working on
- Could possibly bring in others next time: Mac McKee from Utah
- If you have ideas for the agenda next time, let us know as we get to that point next year
- Maybe try to link the RGBI Task 4 Meeting in with the CIRE meeting since most Task 4 people are included in here; more efficient and less travel
- This time of year is good for most – end of May
- Idea for proposals: Look at Cropping Systems proposal as we submitted last year; Cropping System is every other year, so it won’t be available again until next year; see basic components and how to make it stronger
 - Add that information to unsolicited proposal to TWDB
- Use CIRE to collaborate. Post RFP through CIRE to foster collaborative work
 - How to best foster this collaboration?
 - Send RFP out through listserv to initiate conversation/collaboration
- CIG has two components: State ($100,000 max) which is less competitive; and national
- President vetoed the Farm Bill; House is opening up the override right now; could try to enter into this if it goes through
- How to prepare proposals: Form small committees of people to revise/review RFPs and contact those that might be interested in it
- As you develop interest or see somewhere you would like to enhance, look for opportunities to make that happen
- Be visionary to be inclusive for other expertise around the state
- As we develop proposals together, would it help if CIRE submitted the proposal? Have two or three PIs under CIRE. This is supported by and is a priority project recommended by this Consortium...