A Hydro-Econometric Analysis of Producer Water Use and Aquifer Hydrology in the Texas High Plains

Zhuping Sheng, Chenggang Wang
Jesús R Gastélum, Shiliang Zhao
Jeffrey Johnson, Eduardo Segarra, Jim Bordovsky

CIRE
April 14, Lubbock, TX
• Groundwater in the Ogallala Aquifer - the only reliable water source for irrigated agriculture in the Texas High Plains

• Irrigation efficiency improvements - promising groundwater conservation measures.

• Water conservation measures - slow down aquifer depletion? irrigated acreage, irrigation technology and crop choice, and return flow.

• The producer's water use decisions and the hydrologic conditions of the aquifer - interlinked and examined in a unified framework.

• Groundwater Management Area (GMA) - “desired future conditions (DFC)” for the groundwater resources.
Goal: A policy assessment model/tool to evaluate the impacts of water conservation policies and assess strategies for management of the groundwater resources.

Objectives:

• Develop and estimate a hydro-econometric model, accounting producers’ economic behavior and the aquifer’s behavior.

• Simulate the short- and long-term impacts on the aquifer of a set of policy measures identified by stakeholders.

• Disseminate policy findings through targeted publications and

• Make publicly accessible the dataset used in the hydro-econometric analysis.
Study Area
Concept of Linked Model

Hydro-Economic System

Economic Subsystem

Irrigation Response

Hydrologic Subsystem

Aquifer Response

Well Yield
Well Lift

Pumping Stress
Return Flow

Policy
Groundwater Availability
Hydrological Model
Hydrological Model

- Groundwater Availability Model (GAM) (Blandford et al., 2008).
- MODFLOW – 2000
- 270 rows, 290 columns
- 4 layers (hydrogeologic units)
- Stress periods (1930 – 2060)
Hydrological Model (2)

- Modify well configuration (current wells and to allocate the artificial wells in the center of the cells)
- The GAM model was modified by replacing the well package with MNW package
- Estimate head values on the node cell using the GAM
- Integrate the wells and analytical solution in ArcGIS environment, well heads values were estimated using the analytical solution

\[
h_{well} = h_n - \frac{Q_n}{2 \pi T} \ln \left(\frac{r_e}{r_w} \right)
\]

\[
h_{well} = \frac{Q_{net} + \sum_{n=1}^{m} CWC_n h_n}{\sum_{n=1}^{m} CWC_n}
\]

\[
CWC_n = \left[\frac{\ln \left(\frac{r_e}{r_w} \right)}{2 \pi b_n k_n} \right]^{-1}
\]
Change in Groundwater Levels

1970

2000
Groundwater levels and Sat. Thickness in 2040
Simulated Results at a Well

Well Castro2: Simulated and forecasted conditions

- DTW (ft)
- Sat. Thickness (ft)
- Pump Lift (ft)-Conf
Saturated Thickness at Well Castro2 (1038401)

Current trend vs. DFC

Saturated Thickness (ft)

0 50 100 150 200 250 300 350

Current trend

Desired future condition
Groundwater demand prediction
Econometric Model
Study Region and Period

Study Region

Our study region include 21 counties.

- Groundwater is very important for agriculture in the region, and its resources are facing depletion.
- Cover most of south Ogallala aquifer
- Cover most of Groundwater Management Area 2 (TWDB)
- Located at Texas AgriLife Extension Districts 2 (Crop budget)
- Plenty of historical data.
- GAM model can be linked to econometric model.

Study Period

Our study period cover 36 years, 1972-2007.
• Use historic data to fit a decision model explaining the producer’s choice over various crops and irrigation technologies.

• The producer decision model will be used to predict cell-level irrigation water demand.

• The producer decision model will be integrated with the GAMS to simulate future conditions of the aquifer.
• Explained Variable: County-Level Acreage Shares of Crop-Irrigation Technology Combinations

• Explanatory Variables: Crop Price, Fertilizer Price, Seed Price, Irrigation Capital Costs, Lagged Crop Shares, Pumping Lift, Well Yield
Irrigation Acreage & Crop

The bar chart illustrates the irrigation acreage and crop distribution over a period from 1975 to 2005. The x-axis represents the years, while the y-axis indicates the acreage in millions. Each bar is color-coded to represent different crops:

- **Green**: Other
- **Pink**: Wheat
- **Greenish**: Sorghum
- **Blue**: Peanut
- **Red**: Corn
- **Black**: Cotton

The chart shows fluctuations in acreage for each crop category over the years.
External Validation of the Model’s Predicting Power

Cotton (true and predicted) in Parmer county
Price Elasticity of Crop Acreage Shares

To predict farmer's response to market or policy change

<table>
<thead>
<tr>
<th></th>
<th>Cotton</th>
<th>Corn</th>
<th>Sorghum</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td>0.1667</td>
<td>-0.0008</td>
<td>-0.0007</td>
<td>-0.0009</td>
</tr>
<tr>
<td>Corn</td>
<td>-0.0015</td>
<td>0.0158</td>
<td>-0.0001</td>
<td>-0.0002</td>
</tr>
<tr>
<td>Sorghum</td>
<td>-0.0028</td>
<td>-0.0003</td>
<td>0.0136</td>
<td>-0.0003</td>
</tr>
<tr>
<td>Wheat</td>
<td>-0.0030</td>
<td>-0.0003</td>
<td>-0.0002</td>
<td>0.0181</td>
</tr>
</tbody>
</table>
• Project Year 1 (9/2009-8/2010): Data Assembly and Modeling
• Project Year 2 (9/2010-8/2011): Model Estimation and Calibration
• Project Year 3 (9/2011-8/2012): Integration of Economic and Hydrologic Models
• Project Year 4 (9/2012-8/2013): Policy Simulations